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Abstract
A useful semiclassical method to calculate eigenfunctions of the Schrödinger
equation is the mapping to a well-known ordinary differential equation, such
as for example Airy’s equation. In this paper, we generalize the mapping
procedure to the nonlinear Schrödinger equation or Gross–Pitaevskii equation
describing the macroscopic wavefunction of a Bose–Einstein condensate. The
nonlinear Schrödinger equation is mapped to the second Painlevé equation
(PII ), which is one of the best-known differential equations with a cubic
nonlinearity. A quantization condition is derived from the connection formulae
of these functions. Comparison with numerically exact results for a harmonic
trap demonstrates the benefit of the mapping method. Finally we discuss
the influence of a shallow periodic potential on bright soliton solutions by a
mapping to a constant potential.

PACS numbers: 03.65.Ge, 03.65.Sq, 03.75.−b

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the case of low temperatures, the dynamics of a Bose–Einstein condensate (BEC) can
be described in a mean-field approach by the nonlinear Schrödinger equation (NLSE) or
Gross–Pitaevskii equation (see, e.g., [1])(

− h̄2

2M

∂2

∂x2
+ V (x) + g|ψ(x, t)|2

)
ψ(x, t) = ih̄

∂ψ(x)

∂t
, (1)

where g is the nonlinear interaction strength. Stationary nonlinear eigenstates of the NLSE
satisfying ψ(x, t) = exp(−iµt/h̄)ψ(x) fulfil the time-independent NLSE(

− h̄2

2M

d2

dx2
+ V (x) + g|ψ(x)|2

)
ψ(x) = µψ(x). (2)

These nonlinear eigenstates are of course no eigenstates in the sense of linear algebra, rather
they should be interpreted as the stationary states of an infinite-dimensional dynamical system.
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However these stationary states are still of fundamental importance for understanding the
nonlinear dynamics of a BEC. For example, the self-trapping transition of a two-mode BEC is
understood by a bifurcation of the nonlinear eigenstates [2, 3]. Generally, it has been shown
that an adiabatic theorem also holds in the nonlinear case [4], though adiabaticity breaks down
if an eigenstate undergoes a bifurcation [5, 6].

We will focus on the one-dimensional case, which arises, for example, in confined
geometries (see, e.g., [7] and references therein). Then the effective interaction strength is
given by g = 2h̄2aN

/
Ma2

⊥, where a is the s-wave scattering length, a⊥ is the transverse
extension of the condensate and N is the number of atoms [8] and the wavefunction is
normalized as ‖ψ‖2 = 1. The one-dimensional approximation is valid if the nonlinear
interaction is not too strong. Stronger interactions will couple the axial and radial degrees of
freedom. In this regime the non-polynomial Schrödinger equation provides a better description
of the dynamics of a BEC [9].

For convenience we rescale the NLSE (2) such that h̄ = M = 1. This yields the NLSE in
the convenient form

d2ψ

dx2
= −q2(x)ψ(x) + 2g|ψ(x)|2ψ(x) (3)

with q2(x) = 2(µ−V (x)). For the most important case of a harmonic trap V (x) = mω2x2/2
discussed in section 4 this is achieved by rescaling the variables as

x ′ = x/�, ψ ′ =
√

�ψ, g′ = �Mg/h̄2 and µ′ = µ/(h̄ω) (4)

with the standard length � = √
h̄/Mω. The rescaled potential is V (x) = x2/2 and the chemical

potential is given in units of h̄ω. To get a feeling for the relevant dimensions consider a BEC
of 104 atoms with transverse width a⊥ = 10 µm. This yields a scaled nonlinearity of g = +20
for a 87Rb BEC in a trap with axial frequency ω = 2π × 2 Hz and g = −20 for a 7Li-BEC in
a trap with ω = 2π × 100 Hz.

During the last decade a lot of work has been devoted to numerical solutions of the time-
independent NLSE and the development of algorithms (see, e.g., [10] for harmonic traps and
[11] for open system). Analytic solutions, however, are available only for some special cases,
among these the free NLSE [12, 13], arrangements of delta potentials [14–16] and potentials
given by Jacobi elliptic functions [17]. Thus there is a great interest in feasible approximations
to the NLSE, among which the most popular one is the Thomas–Fermi approximation for the
ground state in a trapping potential. An extension of the Thomas–Fermi approximation was
discussed in [18], matching the approximate wavefunction in the classical allowed region to a
smoothly vanishing wavefunction in the classical forbidden region. An iterative semiclassical
method was used in [19] to calculate nonlinear scattering eigenfunctions. The nth-order
approximation for the wavefunction, ψ(n)(x), is calculated using standard WKB methods with
the potential V (x) + g|ψ(n−1)(x)|2, where the lowest order is given by the Thomas–Fermi
approximation.

Recently two advanced semiclassical methods for the calculation of nonlinear eigenstates
were proposed. In the common linear WKB theory, the ‘action’ is expanded with respect to
the small parameter h̄. This is generally not possible for the NLSE, as the interaction term
introduces a new scale into the system. In a recent paper, Konotop and Kevrekidis identified
δ ∼ h̄2/g as a suitable small parameter for a nonlinear WKB approach [20]. The wavefunction
ψ(x) is expanded with respect to δ in an asymptotic series. In the vicinity of the classical
turning points, the WKB solution is matched to a function with the correct asymptotics to
avoid divergences.

Furthermore, a divergence-free WKB method avoiding the problems at the classical
turning points was introduced recently [21, 22]. Here, one substitutes the ansatz ψ(x) =
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exp(ϕ(x)) into the linear Schrödinger equation. In contrast to the traditional WKB method,
the kinetic term ∼d2ϕ/dx2 is eliminated by differentiating again with respect to x. This
method can be generalized to construct the ground state wavefunction of the NLSE.

In the present paper, we discuss another semiclassical method to solve the time-
independent NLSE approximately based on a mapping to Painlevé’s second equation. Special
attention will be paid to the shift of the chemical potential µ of bound states due to the
nonlinear mean-field energy. This method provides good results for excited states and it is
fairly easy to understand and to use.

Finally, let us note that the nonlinear Schrödinger equation also describes the propagation
of electromagnetic waves in nonlinear media (see, e.g., [23], chapter 8).

2. The second Painlevé transcendent

One of the most famous ordinary differential equations with a cubic nonlinearity is Painlevé’s
second equation or, briefly, the PII equation (see, e.g. [24, 25]),

d2φ

dy2
= 2σφ3 + yφ, σ = ±1. (5)

The solutions φk(x), where the index k refers to the asymptotics at y → +∞, are transcendent.
In the linear case, which is found for σ = 0, the PII equation reduces to the Airy equation. In
fact Airy functions are found in the asymptotic limit (see below).

In textbooks one mostly finds results for the repulsive case σ = +1. However, asymptotic
expansions, which will prove itself as quite useful, are available for both cases [26, 27]. For
y → +∞ the Painlevé transcendent φk(x) vanishes as

φk(y) ∼ kAi(y). (6)

We can restrict ourselves to k > 0, since equation (5) is invariant under a sign change of
φ(y). Connection formulae, which relate the asymptotic form for y → −∞ to the form for
y → +∞, are well known [26, 27]. For σ = +1 and k � 1 the Painlevé transcendent diverges.
Otherwise the solution is oscillatory for negative y with asymptotics

φk(y) ∼ d|y|−1/4 sin
(

2
3 |y|3/2 − 3

4σd2 ln |y| − θ
)

+ O(|y|−7/4). (7)

The constants depend on the parameter k as

d2(k) = −σ

π
ln(1 − σk2) (8)

θ(k) = 3

2
σd2(k) ln 2 + σ arg

[
�

(
1 − 1

2
id2(k)

)]
− π

4
. (9)

The form of the second Painlevé transcendent is illustrated in figure 1. We plotted the
Painlevé transcendent φk(y) in comparison with the asymptotic expansions (7) for y < 0 and
(6) for y > 0 for k = 0.5 and σ = ±1. One observes that the asymptotic expansions are quite
accurate already for small values of |y|.

Furthermore, note that the PII equation with σ = +1 can be written as a Hamiltonian
system [25]

dφ

dx
= ∂H

∂p
,

dp

dx
= −∂H

∂φ
(10)

with the Hamiltonian function

H = p2

2
−

(
φ2 +

x

2

)
p − φ

2
. (11)



14690 D Witthaut and H J Korsch

0 2 4
3

2

1

0

0.1

0.2

0.3

0.4

y

φ k(y
)

10 8 6 4 2 0 2 4
0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

y

φ k(y
)

Figure 1. The Painlevé transcendent φk(y) (solid blue lines) for k = 0.5 and σ = +1 (left) and
σ = −1 (right) in comparison with the asymptotic forms (7) (red dashed line) and kAi(y) (green
dash-dotted line).

3. The wedge potential

As a first illustrative example for the application of the PII equation we consider the real-valued
nonlinear eigenstates in a wedge potential

V (x) = F |x|. (12)

This potential provides a natural and easily understandable example for the nonlinear
quantization using the PII transcendent. A gravitational wedge billiard for ultracold atoms has
been realized by two blue-detuned laser beams which give rise to a repelling wedge-shaped
dipole potential [28, 29]. At the boundary of a BEC, a linear approximation of the potential
can be used for arbitrary traps [30]. Furthermore, the quantum states of cold neutrons in
the earth’s gravity potential above a hard wall corresponding to a half-wedge were measured
recently [31].

We consider only real states with a defined parity ψ(x) = (−1)nψ(−x), such that we can
restrict our analysis to the positive real line, x > 0 and replace |ψ(x)|2ψ(x) by ψ(x)3. By
the means of a scaling y = (2F)1/3(x − µ/F) and ψ = |g|−1/2(2F)1/3φ, the NLSE with the
wedge potential is transformed to the standard form

d2φ

dy2
= 2σφ3 + yφ (13)

with σ = sign(g). The scaled variable y is negative in the classically allowed region Fx < µ

such that the wavefunction is oscillatory. In the classically forbidden region Fx > µ one
has y > 0 and the wavefunction vanishes as φ(y) ∼ kAi(y). Note that the differential
equation (13) does not depend on the nonlinear parameter g explicitly—this dependence is
hidden in the normalization of φk(y). Rescaling the normalization condition ‖ψ‖2 = 1 yields

2
∫ +∞

y(x=0)

|φk(y)|2 dy = |g|
(2F)1/3

. (14)

The quantization condition can now be deduced from the asymptotic form (7) of the
Painlevé transcendent. Note that the definition of a quantum number is not so straightforward
as in the linear case, as new nonlinear eigenstates can emerge and disappear if the nonlinearity
g is changed (see, e.g. [32]). However, if we restrict ourselves to the nonlinear eigenstates
with a linear counterpart and thus a defined parity, the quantum number can be identified with
the number of zeros of the wavefunction. Thus the relevant quantization condition is that the
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Figure 2. Nonlinear eigenstate with quantum number n = 6 of the NLSE for a wedge potential
V (x) = |x|. Left: wavefunction for g = 5, right: dependence of the chemical potential on the
nonlinearities g. The semiclassical results (dashed red line) are compared to numerically exact
results (solid blue line).

wavefunction ψn(x) must have n zeros. Due to the (anti)symmetry ψ(x) = (−1)nψ(−x), the
wavefunction assumes an extremum (n even) or a zero (n odd) at x = 0.

Using the asymptotic form (7) of the Painlevé transcendent, this condition can now be
cast into an explicit form. As the asymptotic form of the PII transcendent is basically given
by a sine function, a condition for the argument of this sine function directly follows from the
conditions on the wavefunction. In fact, the argument of the sine at y (x = 0) = −21/3µ/F 2/3

must equal (n + 1)π/2. Inserting this into equation (7) yields the relevant quantization
condition

(2µ)3/2

3F
− 3

4
σd2(kn) ln

(
21/3µ

F 2/3

)
− θ(kn) = n + 1

2
π, (15)

where d(kn) and θ(kn) are given by equations (8) and (9), respectively. The advantage of this
method is that the problem of solving a nonlinear boundary value problem is reduced to a
single algebraic equation.

However, calculating a nonlinear eigenstate with quantum number n for a given value of
the nonlinear parameter g is not so easy. In fact one has to determine the chemical potential
µ so that the quantization condition (15) and the normalization condition (14) are fulfilled
simultaneously. This can be achieved by an iterative method. It is much easier, however,
to start from a fixed value of µ. The quantization condition (15) then yields solutions kn

for different quantum numbers n. Given these values of kn, one can calculate the Painlevé
functions φk(y) and the effective nonlinear parameter gn(µ) from the normalization integral
(14). Rescaling the variables to x and ψ again directly gives the wavefunction ψ(x). Such
renormalization procedures are also inevitable in many numerical schemes for the computation
of nonlinear eigenstates (cf [11]).

To test the feasibility of this approach, we consider the nonlinear eigenstate n = 6 for
a wedge potential with F = 1. The resulting wavefunction is shown in figure 2 on the
left-hand side (dashed red line) in comparison with the numerically exact solution (solid blue
line). Both wavefunctions are indistinguishable on the scale of drawing. The right side shows
the dependence of the chemical potential on the nonlinearity g, again in comparison to the
numerically exact values. One observes a good agreement. The numerical results for the
NLSE solutions were obtained using the standard boundary-value solver bvp4c of MATLAB.

Let us again note that the nonlinear eigenstates analysed in this section are no eigenstates
in the sense of linear algebra. In particular there is no superposition principle and the dynamics
of an arbitrary wavepacket cannot be decomposed into eigenstates. However, the nonlinear
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Figure 3. Solution of the NLSE for a wedge potential: error of the semiclassical calculation of
the chemical potential µsc − µex in dependence of the quantum number n for g = 5.

eigenstates are still stationary states of the time-dependent NLSE. Small perturbation will not
affect the dynamics seriously unless the eigenstates undergo a bifurcation as predicted by the
nonlinear adiabatic theorem [4]. The phase of the states varies as exp(−iµt), where the shift of
the chemical potential µ with the nonlinearity g is conveniently described by the semiclassical
model.

The only error in this calculation results from the replacement of the PII transcendent by
its asymptotic form (7). This error vanishes rapidly for larger quantum numbers n, which is
illustrated in figure 3. The extrema of the PII transcendent are given less accurately by the
asymptotic form than the zeros. Thus the error is larger for even quantum number n.

4. The harmonic potential

Now we want to extend the quantization method presented in the previous section to a more
important application—the harmonic trap

V (x) = x2

2
. (16)

A common method used in semiclassics is a comparison of the Schrödinger equation to a
well-known differential equation, such as Airy’s equation [33, 34]. Similarly we will map the
NLSE for the harmonic trap to the PII equation.

We use the mapping ansatz

ψ(x) = af (x)φ(y(x)), (17)

well known for the linear Schrödinger equation [34], however with an additional scaling
constant a. Differentiating twice gives

1

a

d2ψ

dx2
= d2f

dx2
φ + 2

df

dx

dφ

dy

dy

dx
+ f

dφ

dy

d2y

dx2
+ f

(
dy

dx

)2 d2φ

dy2
. (18)

We demand that the terms proportional to dφ/dy cancel, which leads to the condition

2
df

dx

dy

dx
+ f

d2y

dx2
= 0 ⇒ f (x) =

(
dy

dx

)−1/2

. (19)
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Furthermore the term proportional to d2f/dx2 is assumed to be small and can be neglected.
Substituting the PII equation (5) and the NLSE (3) into equation (18) finally yields(

dy

dx

)2

[2σφ3 + yφ] + q2(x)φ − 2ga2

(
dy

dx

)−1

φ3 = 0. (20)

In the linear world, which is given by g = 0 or σ = 0 respectively, this directly gives a
differential equation that determines the mapping y(x). If the nonlinear effects are small, we
can neglect the nonlinear terms in the mapping equation which yields(

dy

dx

)2

= −q2(x)

y(x)
. (21)

The scaling constant a is now chosen such that the error due to the neglect of the nonlinear
terms in the mapping equation (21) is as small as possible. In the fashion of a least-squares
fit, a is chosen such that the error

χ2 =
∫ ∞

−∞

[
σ

(
dy

dx

)2

− ga2

(
dy

dx

)−1
]2

φ(y(x))6 dx (22)

is minimal. This can be done at the end of the calculation, after φ(y(x)) has been determined.
This mapping can now be used to approximately calculate eigenstates in symmetric single

minimum potentials at x = 0, e.g. a harmonic trap V (x) = x2/2. For wavefunctions with a
linear counterpart, that have a defined parity, we can restrict our analysis to x � 0. To avoid a
divergence at the classical turning point xt the mapping has to be such that y(xt ) = 0. Thus
the integrating equation (21) yields the mapping in explicit form

y(x) = ±
[
±3

2

∫ x

xt

√
|q2(x ′)| dx ′

]2/3

, (23)

where the − sign is taken in the classically allowed region x < xt and the + sign is taken in
the classically forbidden region x > xt .

The quantization condition is deduced from the asymptotic form of the Painlevé
transcendent (7) exactly as in section 3. The only difference is that the mapping is now
given by equation (23), such that the expression for y (x = 0) is a little more complicated.
Thus the relevant quantization condition is given by

2

3
|y(0)|3/2 − 3

4
σd2(kn) ln |y(0)| − θ(kn) = n + 1

2
π. (24)

To test the feasibility of this approach, we consider the nonlinear eigenstates for a harmonic
potential V (x) = x2/2. The result for the eigenfunctions with n = 10 is shown in figure 4.
The left-hand side shows the wavefunction calculated using the mapping procedure (dashed
red line) in comparison with the numerically exact solution (solid blue line). The right-hand
side shows the dependence of the chemical potential on the nonlinearity g, again in comparison
to the numerically exact values. One observes a good agreement.

Figure 5 shows results for different quantum numbers n. The error of the semiclassical
calculation, i.e. the difference of the semiclassical value for the chemical potential µsc and the
numerically exact value µex, is plotted against the quantum number n for g = 1 and g = 10.
Except for very small values of n and g = 10, for which the reduction to the asymptotic form
(7) is not valid, one obtains reasonable results for the semiclassical approximation.

The method introduced above can be extended to asymmetric trapping potentials. Then
one has to construct solutions around the two classical turning points separately, which are
matched at a ‘mid-phase point’ [33]. In this spirit the restriction to symmetric or anti-symmetric
solutions above is nothing but a matching of two solutions at the mid-phase point x = 0.
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Figure 4. Nonlinear eigenstates of the NLSE in a harmonic potential V (x) = x2/2. Left:
wavefunction of the eigenstate with quantum number n = 10 for g = 10, right: dependence of
the chemical potential on the nonlinearities g for the eigenstates n = 10 − 16. The semiclassical
results (dashed red line) are compared to numerically exact results (solid blue line).
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Figure 5. Solution of the NLSE for a harmonic potential: error of the semiclassical calculation of
the chemical potential µsc − µex in dependence of the quantum number n for g = 1 (blue circles)
and g = 10 (red crosses).

In the linear case g = 0, a mapping to a similar potential with two classical turning
points, in fact the harmonic potential, avoids this matching procedure [34]. In the nonlinear
case, however, the single-turning point equation PII has some advantages compared to the
NLSE with a harmonic potential because the PII equation is free of movable branch points
and connection formulae are well known.

5. Mapping to a constant potential

The mapping technique introduced above can easily be generalized to other setups. In this
section we demonstrate the calculation of nonlinear eigenstates in a weak periodic potential
by a mapping to the free NLSE. It is well known that the free NLSE

d2φ

dy2
+ 2νφ(y) − 2gφ(y)3 = 0 (25)

has soliton solutions. Bright solitons are found for ν < 0 and g < 0, given by

φ(y) =
√

2ν/g sech (
√−2ν(y − y0)), (26)
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Figure 6. Left: bright soliton solution in a cosine potential of strength w = −0.05 for geff = −1.
Numerically exact results (solid blue line) are compared to results from the mapping technique
(dashed red line). The bright soliton solution for w = 0 (26) is also plotted as a reference (black
dotted line). Right: bright soliton solution for geff = −1 and different values of w.

and dark solitons for ν > 0 and g > 0 are given by

φ(y) =
√

ν/g tanh (
√

ν(y − y0)). (27)

Using a mapping technique as in the previous section we explore the effects of a small
additional cosine potential on these solitons. In fact we consider the NLSE

d2ψ

dx2
+ 2(µ − w cos(x))ψ(x) − 2gψ(x)3 = 0. (28)

Using again the ansatz (17) and following the lines of reasoning of section 4, one arrives at(
dy

dx

)2

[2gφ3 − 2νφ] + 2(µ − v cos(x))φ − 2ga2

(
dy

dx

)−1

φ3 = 0. (29)

Again one chooses the scaling factor a to minimize the difference of the nonlinear terms

χ2 =
∫ ∞

−∞

[
g

(
dy

dx

)2

− ga2

(
dy

dx

)−1
]2

φ(y(x))6 dx (30)

and neglects them in equation (29) to arrive at the mapping equation(
dy

dx

)2

= µ − w cos(x)

ν
. (31)

To ensure that the right-hand side is positive, one must always be in the classically allowed
region (µ > w, thus ν > 0) or the classically forbidden region (µ < −w, thus ν < 0); values
in the interval µ ∈ (−w,w) cannot be treated within this framework.

To show the validity of this method, we calculate a bright soliton solution in a cosine
lattice V (x) = w cos(x). The left-hand side of figure 6 shows the wavefunction calculated by
the mapping method in comparison to the numerically exact solution. One observes a good
agreement. A systematic deformation of the wavefunction in comparison to the free soliton is
observed, which is well described by the mapping procedure. This is further illustrated on the
right-hand side of figure 6, where the soliton wavefunction is plotted for different values of the
potential strength w. The deformation of the soliton can be understood as a perturbative effect.
For w < 0, a potential minimum is created around x = 0 attracting the condensate and thus
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Figure 7. Shift of the chemical potential of a bright soliton in a cosine potential in dependence of
the nonlinearity geff for w = −0.2 (left) and in dependence of the potential strength w for geff − 4
(right). Numerically exact results (solid blue line) are compared to results from the mapping
technique (dashed red line).

increasing the intensity at this position. Altogether the soliton is narrowed. Correspondingly
a potential maximum at x = 0 repels the condensate and the soliton becomes broader for
w > 0. In terms of the mapping solution, the deformation of the soliton is described by the
scaling function f (x) = (dy/dx)−1/2. For w < 0 one has f (0) > 1 such that the height of
the soliton increases. The height is reduced for w > 0, where f (0) < 1.

Furthermore we calculate the dependence of the chemical potential µ of such a bright
soliton on the nonlinearity geff for a fixed value of w and on the potential strength w for a
fixed nonlinearity geff . The results obtained by the mapping method and the numerically exact
results are compared in figure 7. One observes a good agreement.

Concluding this section, we have shown that a bright soliton solution survives in the
presence of a weak perturbative potential. The effects of this perturbation can be described
by a mapping technique. The soliton is narrowed or broadened depending on whether it is
situated in a potential well or at a potential maximum. Consequently its chemical potential is
decreased or increased.
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